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Gauss' law and its applications 

Gauss' law: 

Gauss' law define as , εo times the surface integral of the normal component of E over 

any closed surface in an electrostatic field which equals the net charge inside the 

surface. 

Mathematically,       

 

1. Derivation of the Gauss' law: 

 

Soln:  

Let us consider,  a positive charge q is enclosed in a surface of arbitrary shape as 

shown in Figure. The electric field E at every point of the surface is directed radially 

outward from the charge, and its magnitude at  

the point r is 

                                  

Over an infinitesimal area da the magnitude and  

direction of the field remains the same. The  

component E along the normal is En= E cos θ,  

where θ is the angle between E and the outward  

normal to the surface. 

Hence 

    (1)        

But da cos θ is the projection of da along the 

 radius vector    r   and 

                     

the element of solid angle subtended by da at the point where q is located. Thus 

                                   (2) 

Regardless of the shape or size of the closed surface 

  Steradians 

Hence integrating over the entire closed surface Eq. (2) yields 

                   (3) 

where   means closed surface integral. Eq. (3) can be put in vector notation if we 

note that the vector element area da is along the normal. Hence, Enda = E . da. Thus 

Eq. ( 3) takes the form 

                     

This is the required gauss' Law. 
 
 

 
Figure: An imaginary closed surface   

           which encloses a point charge. 

 



Aplication of Gauss' law: 

 

2. Deduction of Coulomb's law by using Gauss' law: 

 

Soln: 

Coulomb's law can be deduced from Gauss' law and symmetry considerations. If a 

point charge q is surrounded by a spherical surface as shown in Figure, then from 

symmetry consideration the field E is normal to the surface and is constant in 

magnitude for all point on it. A closed surface so imagined under symmetry 

consideration will be called a Gaussian surface-a term which we shall often use. 

In Figure both E and da at any point of the  

spherical Gaussian surface have direction  

radially outward. Hence E.da = Eda, and the  

Gauss' law becomes 

                   

But since E is constant on the surface, it can  

be taken outside the integral sign, and  

consequently 

                                  

                 Or,                          

In vector form      

We know that,  F = qE 

              

Then the force on charge qo at r is 

                                 

In vector form          

which is nothing but the Coulomb's law of electrostatic force, 

Thus, Coulomb's law can be deduced from Gauss' Law and symmetry considerations. 

 

 

 

 

 

  
Figure: Spherical Gaussian surface 

around a point charge. 



3. Electric field due to a charged sphere: 

Soln:  

Let us consider a solid conductive sphere of radius R. If an amount of charge q is 

placed on the sphere it will be distributed uniformly over the surface of the sphere. No 

charge can reside in the interior region, because it will disturb the normal distribution 

of charges in this region of the conductor and hence will create an unbalanced electric 

 

 

 

 

 

 

 

 

 

 

 

field causing a current to flow. This cannot happen in the case of electrostatic 

problems. Therefore, the added charge can only reside on the surface of the conductor. 

But, the distribution of the charge over the surface must be uniform, otherwise there 

will exist a component of electric field tangential to the surface thus causing a current 

to flow on the surface. Again this phenomenon cannot happen in the electrostatic case. 

The distribution of the charge should be such that it would not create a tangential 

component of the field so that the field is, at all points on the surface, perpendicular. 

The above discussion is also true for any conductor of arbitrary shape. Since no 

tangential component of the field exists on the surface of the conductor, the surface 

will be an equipotential surface. 

To find the field at a point  r  < R of a charged sphere, we imagine a spherical 

Gaussian surface of radius r concentric with the sphere, Fig. 1. From symmetry and 

the above argument we see that E can be radial and E is uniform over this Gaussian 

surface which does not contain any charge. So from Gauss' law,      

We get                        

Hence E = 0  for r < R 

To find the field at r > R, we imagine a similar Gaussian surface passing through that 

point, Fig. 2, which now includes the charge q. Again, E is radial and uniform over 

this Gaussian surface. 

So From Gauss' law,  

    

or,      .............................................  (1)                      

In vector form    for r > R 

Eq. (1) is equivalent to the field at a point r due to a point charge q. Thus, we may say 

that while finding the electric field at a point outside of a charged sphere, the charge 

can be considered to be concentrated at the centre of the sphere and we can use the 

formula for a point charge.  

    
Fig. 1: Gaussian surface inside the       Fig. 2: Gaussian surface outside 

charged sphere.                                     the charged sphere. 



4. Electric field due to a long charged cylinder:  

 

Soln: Let us consider,  a long cylinder of radius a is uniformly charged having a 

charge λ per unit length. The field E at a point outside the cylinder can be obtained by 

constructing a Gaussian surface that  

passes through that point and surrounds 

an arbitrary length L of the cylinder,  

shown in  Figure. The Gaussian  

cylindrical surface thus constructed has  

the symmetry property, and as the  

charged cylinder is long there  

is no effect from its ends. The field is  

everywhere constant on the Gaussian  

surface, and directed radially away from  

the axis so that E and da are in the same  

direction on the curved surface.  

Hence from Guuss' law,      we get        

     

where integration is taken over the curved surface.  

Thus             

In vector notation       for r  > a 

The charged cylinder behaves as if the charge is distributed on a thin wire which 

passes along the axis of the wire. 

To find the field in the interior of the charged cylinder, we note that no charge can 

reside in this region and hence applying Gauss' law we find E = 0 for r < a. 

 

5. Electric field due to a uniformly chargea plane:  

 

Soln: Let us consider, a uniformly charged plane  

of infinite extent having charged σ per unit area  

of the surface. An area  of the plane can be  

enclosed by a Gaussian cylinder of the same  

cross-section as shown in Figure. Now, E is  

uniform, parallel to da on the ends and  

perpendicular to da on the curved surface.  

Hence,   

we obtain from Gauss' Law   

  

or,     

Hence                                 

This is the required expression for the Electric field due to a uniformly charged plane. 

 
Figure: Cylindrical Gaussian surface for a    

             long charged cylinder 

 

 

 
Figure: Cylindrical Gaussian  

surface for a large uniformly  

charged plane. 

 



                          
6. Field due to two parallel charged plates:  

 

Soln: 

Let AB and CD be two parallel plates of very great extent. AB has positive charge and 

CD has negative. From figure we get, at point P, the  

field due to plate AB is , pointing right, and  

that due to plate CD is , pointing right  

( because the plate CD is charged negatively and E  

must direct towards it). Therefore, the total field at P  

is, by the principle of superposition,  

        

the direction being from plate AB to plate CD, that is,  

from positive charge to negative charge. 

 

The field at Q however, is , towards right due  

to plate AB and , towards left due to plate CD  

and the total field is zero. This proves that the field at  

points outside the plates, such as Q and R, vanishes. 

 

 
 

 
 Figure: Gaussian surfaces  

 for two parallel charged    

  plates. 


